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Abstract

A simple and accurate approach to modeling deformation processes
that are highly constrained by boundary conditions is presented. The
method involves a detailed finite element analysis of the most control-
ling aspects of the process. Additional analysis of the material states
of texture and anisotropv are calculated as deemed necessary. The
method is applied to the rolling process with a detailed analysis of the
rolling of aluminum sheet. Particular attention is paid to the analy-
sis of the roll-gap geometry and the transfer of tractions from the roll
to the workpiece. The calculated deformation state is then applied to
a more detailed calculation of material texture, which tracks the mo-
tion of individual crystallites due to macroscopic boundary conditions.
The method allows not only a detailed analysis of through-thickness
texture gradients, but also a detailed description of the boundary con-
ditions and deformation states that cause such textures. The macro-
scopic anisotropy resulting from such textures is investigated, and the
use of the method as a process design tool is discussed. Finally, results
are compared to experimentally determined through-thickness texture
gradients in rolled aluminum alloys, and details concerning the general
roll-gap deformation field are discussed.
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1. Introduction

During the process of sheet rolling, a billet or workpiece is passed under a roll that compresses
and shears the material. Although the workpiece may be pushed or pulled under the roll, it is
the interaction with the spinning roll that adds varying through-thickness shear deformations
to the workpiece and thus destroys homogeneity through the cross section. These gradients in
through-thickness deformation, along with the resulting differences in material state such as
texture and anisotropy, are important with regard to the material's constitutive properties
and mechanical behavior during subsequent forming processes such as sheet bending or
drawing.

During deep drawing, for example, texture-induced anisotropy is the cause of nonuniformity
in the height of the rim above the base in cups punched from rolled polycrystalline sheet.
Optimum drawability (i.e., the maximum depth to which a cup can be drawn while minimiz-
ing anomalies in the height [known as ears]) has been defined and interpreted with respect
to texture by Lequeu and Jonas (1988), while Nelson and Fricke (1988) have correlated
particular textures with the behavior of ears on cups drawn from rolled sheet.

Another example includes the necking of thin rolled sheets. Hill (1950) described the incli-
nation of such necks away from the rolling direction based on macroscopic anisotropy due to
rolling. Still another example was provided by Asaro and Needleman (1985) who incorpo-
rated textural effects into calculations of localization in biaxially stretched sheets and were
able to develop forming-limit diagrams for textured polycrystalline sheet.

Accordingly, the purpose of the present work is to develop a relatively simple, but accurate
approach to modeling deformation processes, such as rolling, for the purpose of predicting
deformation and material states. Our intentions for rolling are to concentrate on under-
standing the effects of boundary constraints such as are imposed by the geometry of the
roll-workpiece contact zone and the friction that develops between them. With this in mind,
we sought a particularly efficient approach with the additional aim that it might be directly
useful in designing rolling processes. Such an approach will also allow for the effort to be
placed on what are deemed the most controlling aspects of the process; whereas, additional
detail regarding material constitutive description or material failure mechanisms may be
added as they are judged to be necessary.

The roll-workpiece interaction complicates the deformation state in at least two fundamental
ways. The first is by frictional interaction. Shear stresses along the workpiece boundary have
been experimentally connected to the development of inhomogeneous through-thickness tex-
ture (and thus to displacement fields) by Truszkowski, Krol, and Major (1980); Truszkowski
and Kiel (1980); Asbeck and Mecking (1978); and Dillamore and Roberts (1963) among
others. Most authors agree that this effect is limited to a shallow surface layer. For exam-
ple, Asbeck and Mecking (1978) studied through-thickness variation in rolled copper single
crystals. The initial orientation of the crystals were chosen such that the orientation would
remain stable during plane-strain compression. In rolling such crystals, deviations from the
plane-strain compressive state would be detected by a change in the orientation of the single
crystal. They found that the influence of friction is only of minor importance away from a
small surface layer. Second, and perhaps more significant, substantial penetration of shear
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deformation into the cross section can be found as an effect of roll-gap geometry, in par-
ticular, during what has become known as small draught rolling. Small draught rolling is
characterized by the previously cited authors as the ratio l/h < 0.5, where l is the length

of contact between the roll and workpiece, and h is the initial thickness of the workpiece.
Asbeck and Mecking's (1978) experiments showed that the orientation of the rolled single

crystals became more inhomogeneous through the thickness as 1,/h became less than 0.5.
Our simulations. in fact, reflect their experimental results in that we find frictional effects are
limited to the surface of the workpiece, and large inhomogeneous texture gradients develop
as the ratio 1,/h decreases. In what follows, we compare our predicted polycrystal textures
to the experimental results of Dillamore and Roberts (1963) and Truszkowski. Krol. and
Major (1980) and find that we are able to predict through-thickness textural gradients in
rolled polycrystal aggregates.

In previous analytical investigations into textural development in polycrystal aggregates, the
rolling process has often been idealized as plane-strain compression. Although agreement
between plane-strain textures and textures measured from the center of rolled specimens
have been found experimentally by Truszkowski, Krol, and Major (1980); Truszkowski and
Kiel (1980): and Dillamore and Roberts (1963), a more detailed analysis of the roll gap
is required in order to resolve textures away from the center of rolled materials. In the
previously mentioned experiments, it is found that textures through the thickness of the
workpiece vary from those characteristic of plane-strain compression in the center of the sheet
to a mixture of compression and shear textures at the sheet surface and that the textural
gradients vary according to the previously mentioned rolling conditions. Our simulations
reflect these trends and add insight to the deformation states that cause these textures to
occur.

In order to accurately resolve the roll-gap displacement field, we have conducted finite el-
ement analyses of the rolling process. Special attention has been paid to the frictional
boundary conditions and the description and control of the roll-gap geometry. Our plan
wa. to use a reasonably accurate, but computationally efficient global constitutive model
to approximate macroscopic aggregate behavior during the rolling process. To this end, we
have used a version of the phenomenological constitutive theory developed by Bammann
(1990) that has been shown to give predictions for multiaxial stress vs. strain response that
is consistent with those given by Asaro and Needleman's (1985) polycrystal model based on
crystallographic slip theory (Schoenfeld et al. 1991). Once the displacement time history of
the roll gap has been calculated, a more detailed analysis can be conducted at arbitrary lo-
cations of interest through the thickness of the workpiece that, inter alia, calculates texture,
material anisotropy. and more detailed material constitutive behavior. For this purpose, we
have used the elastic-plastic polycrystal model developed by Asaro and Needleman (1985).
We believe the procedure to be highly efficient and, as is indicated by the comparisons to
experiment presented section 5, quite accurate. With regard to the apparent accuracy of
our approach. we suspect it is primarily due to the fact that in processes such as rolling,
deformation fields are strongly constrained and determined by boundary conditions; this
would then underscore our decision to pay particular attention to the constraints imposed
by contact and friction.
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We note that other approaches have been tried to model microstructural changes within
formed polycrystalline parts, in particular those that have used slip theories, per se, to
model the constitutive theory. For example, Kalidindi, Bronkhorst, and Anand (1991) have
implemented Asaro and Needleman's (1985) polycrystal model within the finite element code
ABAQUS (Hibbit, Karlsson, and Sorensen 1988) and have carried out simulations of simple
deformation processes such as simple shear and plane-strain forging. Mathur and Dawson
(1989) have likewise used existing models of this kind to simulate plane-strain rolling; their
analysis, however, did not concentrate on the effects of boundary constraints as done here.
Implementation of such theories is, of course, quite standard and straightforward nowadays,
especially since these versions of crystal slip theory were originally formulated for finite
element analyses (e.g., Pierce, Asaro, and Needleman 1983; Harren, Deve, and Asaro, 1988).
They are not, however, likely to lead to additional insight in problems where the overall
fields are so strongly influenced by boundary constraints.

The plan of the paper is as follows. Section 2 is concerned with the description of the finite
element analysis of rolling. The contact algorithm used is described in section 2.1, the friction
model in section 2.2, the phenomenological constitutive model in section 2.3, and the finite
element model overall in section 2.4. In section 3, the texture analysis is described. The
computed results are presented in section 4, and discussion and conclusions follow in section
5.

2. Boundary Conditions

The idealization of the rolling process as plane-strain compression has, in the past, been
motivated by attempts to provide a simple description of the deformation state. The plane-
strain compression boundary conditions were first idealized by prescribing only equivalent
principal strains in the directions perpendicular to the compressive axis. For the purpose
of analyzing texture development, Asaro and Needleman (1985) later described the plane-
strain compressive state as a combination of both tractions and deformations and then
solved the mixed-boundary value problem. The success of this method was that it removed
the constraints imposed on the constitutive model by simpler displacement-only descriptions
of the boundary value problem. The limitations of the model, of course, were that applied
displacement fields and tractions must be known, a priori, thus restricting analysis to simple
deformation states.

In an attempt to model the combined compression/shear deformation state found during
rolling, Lee and Duggan (1991) added a component of shear to the macroscopic velocity
gradient that they imposed on an aggregate. This deformation state was considered uniform
through the thickness, and no attempt to resolve actual inhomogeneities for any particular
roll gap was made. In the analysis that follows, a detailed finite element formulation is used
to resolve macroscopic boundary conditions throughout the roll gap.

The boundary conditions for the polycrystal aggregate calculation are extracted from a finite
element analysis using a modified version of DYNA2D. The explicit, 2-D vectorized finite
element code is ideal for analyzing the large-strain dynamic response of inelastic solids. It
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contains a contact-impact algorithm that is ideally suited toward our analysis. Our mod-
ifications to the code include implementation of an advanced friction model for friction at
high normal pressure and a physically motivated internal variable constitutive model to give
a reasonable approximation to global polycrystal aggregate behavior. These modifications.
along with a precursor description of DYNA2D's contact algorithm, are documented in the
following sections.

2.1 Contact Algorithm

The tractions arising from the roll-workpiece contact are of paramount importance in cal-
culating the boundary conditions applied to the polycrystal aggregate. In order to describe
the roll-gap geometry accurately, the model must include an elastically deformable roll. This
being the case, the geometry of the imposed traction boundary condition is not known prior
to rolling, and tractions must be imposed through the use of a contact algorithm that can
accommodate the transfer of tractions from the deformable roll to the workpiece. Input to
the model will include a list of nodes on the surface of the roll (master nodes) and nodes on
the surface of the workpiece (slave nodes). Initial conditions will include only a description of
the rolling motion of the tool. Displacements in the workpiece occur due to the transmission
of normal and shear forces from the roll to the workpiece via the contact algorithm.

After an increment of displacement, a search is performed to determine if any particular
slave nodes have penetrated into any particular master segments (i.e., elements containing
master nodes). In the event of a slave penetration into a master segment, the distance of
penetration. 1. in the direction normal to the surface, m, is calculated. A restoring force.
q. is applied to the affected degrees of freedom to restore the node to the interface surface.
The restoring force is calculated by approximating the interface by a series of elastic springs
it has become known as the penalty method (Kiuchi and Oden 1986). The force applied to
the slave node perpendicular to the interface is a function of the penetration distance and
stiffness coefficient, k. based on the elements that contain the node. In particular,

q = kim, (1)

and
k = pKiAiZ. (2)

In equations (1) and (2), Ki is the bulk modulus, Ai is the segment area, V is the volume
of the ith element that contains the node, and p is the penalty scale factor (taken here to
have a value of 0.10). For each element, k is calculated on the slave surface that contains
the node and then averaged.

Friction is then included into the algorithm as in Benson and Hallquist (1990). The maximum
permissible frictional force, Q,,,, is obtained from

Qrna = TJ(q), (3)

where 'I(q) returns the maximum allowable frictional force based upon the normal force;
this is discussed in the next section. A trial force, qt, is calculated based on a displacement
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increment of the slave node along the master interface segment, Ax (Benson and Hallquist
1990), and the force vector associated with the node from the last time step, q', as

qt =q, KAx. (4)

The new force vector associated with the node, ql+l, will be

qn+l = qt if Iqtl<Qmax, (5)

or
qn+l = Qmax.*qt if qt > Qmax. (6)

I qt j

The total force on the slave node is now the sum of the normal and the tangential forces,

Q = q+qn', (7)

while an equal and opposite force is distributed to the nodes of the master segment via the
element interpolation functions.

2.2 Friction Model

The frictional conditions encountered within the roll gap vary both temporally at any par-
ticular point along the interface and spatially along the contact length. During the initial
phase of the rolling process, the contact length is small and shear stresses along the interface
work to drag the workpiece under the roll. As the contact length grows, the workpiece also
accelerates, and its velocity relative to the roll also changes. Normal stresses become quite
high (four to five times the material yield stress depending on the roll-gap geometry), and a
standard assumption of Coulomb friction would yield unrealistically high frictional forces as
follows from Wanheim (1973) and Durham and Assempoor (1990). The friction model chosen
here is taken from Wanheim (1973) and Wanheim and Bay (1978). The model is based on
a physical picture of flattening of surface asparities and the change of real vs. apparent area
of contact with increasing normal pressure. For low normal pressure, Wanheim and Bay's
expression leads to a linear proportionality between shear stress and normal pressure. As
the normal pressure increases, the shear stress eventually saturates to a fraction of the yield
stress in simple shear. This saturation shear stress is based on the fraction of full-sticking
in the real area of contact. Since Wanheim and Bay's expression was derived for an ideally
plastic material, the results are not directly applicable, and we use the modification of the
original expression due to Richelsen (1991). Here, we approximate the yield stress in pure
shear as a/V-, where a, is the material flow stress in pure tension. The modification of
Wanheim and Bay's result due to Richelsen yields an expression for the maximum allowable
shear stress during frictional sliding, vis.;

r 1uT, if Tn <T'
(n-T()T) AT. i f Tn " T" (8)

Tt(T,) = Tt± (f/-V_ -Tt)(1 -exp{ T' ') if (
(f V3 5-Tt)T.$



T, and T are the normal and shear stresses along the interface, respectively. T' and T'

are the values of T, and Tt at the limit of proportionality. The friction factor, f, is a

measure of the previously mentioned ratio of real contact area to apparent contact area.

and its equivalence with the familiar coefficient of friction, p, is made through the following

expression due to WVanheim and Bay (1978):

f
+ !' + Cos-' (f ) + VT -f 2(9

The physical relevance of equation (8) is perhaps made more clear by a plot of its result.
Figure 1 shows a plot of ITt/I/a vs. T/a 0 for various values of the friction factor f. Durham
and Assempoor (1990) implemented both the Wanheim and Bay model and the Coulomb
friction model into a finite element code. They modeled the plane-strain compression of a
wedge-shaped specimen and found the Wanheim and Bay model to be in close proximity

to experimentally determined loads and geometry. The frictional stresses predicted by the
Coulomb model were unrealistically high.

0 .8 0 .... . . . ..

f=
0.60 - ----- 1.0

0.9i Tt Jf0.8
_1  0.40 / 0.7

_o , __ 0.6
/ ___ 0.5

,'// / _0.4
0.20 0.4

0.3
0.0_ _ _ _ _ 0.2

0.00 .4 A ----- 
0.1__ _ __ _

0.0 2.0 -Tn 4.0 6.0

0

Figure 1. Plot of Wanheim and Bay's expression for friction as a function of
normal stress.

2.3 Constitutive Modeling for the Finite Element Analysis

In order that the roll-gap displacement field be properly described, it is necessary to achieve
at least a reasonable fit to the polycrystal aggregate behavior. Toward this end, we have
implemented the temperature- and strain-rate-dependent plasticity model due to Bammann
(1990).
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In order to obtain an accurate description of global material behavior, Bammann (1990) has
incorporated many microstructural features into a continuum model as they might behave
in a statistical fashion. The model assumes that inelastic flow is dependent upon the current
stress state and two internal variables, which are said to describe the statistical behavior of
dislocation mechanics on a continuum level. The internal variables evolve in a hardening
minus recovery format so as to account for both dislocation pile up and recovery due to cross
slip. Further, this model can account for the rate sensitivity of both the yield stress and
each recovery mechanism separately. The model develops as follows: when stresses are small
in comparison to the elastic moduli, the elastic constitutive relation is specified by

0

a - £: D', (10)

where the Cauchy stress, o, is convected with the elastic spin WZ* as
0

a = 6, - W . 0 + 0l (11)

and £ is the fourth-order tensor of elastic moduli. Under the assumption of isotropic elas-
ticity, equation (10) becomes

a = Atr(De)I + 2GD e . (12)

The decomposition of the skew symmetric and symmetric parts of the velocity gradient is
written as

D* =D- Dp, (13)

and
i* =Qi - f p,  (14)

where D* and W)* represent the elastic part of the rate of deformation and the elastic spin,
respectively.

To complete the constitutive description, assume W P = 0, thus recovering the Jaumann
stress rate, and then define the flow rule as

D P  f(9)sinh [1W1- Y(0)]1 _, (15)

where r is the scalar hardening variable, 0 represents temperature, and ' represents the
translation of the yield surface with the back stress a' as

= '-a'. (16)

The temperature dependence of the scalar functions f(0), Y(0), and V(0) is discussed later.

The evolution of the internal variables r and a is described as

= h(9)D P - [rd(O)lDPI + r,(0)]lala, (17)

and
k = H(0)IDPI - [Rd(0)IDPI + R8 (0)]K 2 . (18)
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In this description, h(0) and H(O) represent standard hardening moduli with the exception
that they depend on temperature. The scalar functions denoted by r (O), R,(0), rd(O), and
Rd(O) represent the static and dynamic recovery terms respectively. These constants can be
determined as in Schoenfeld et al. (1991), where the previously discussed model is calibrated
to the aggregate polycrystal response of face-centered cubic (FCC) single crystals as described
by the Asaro and Needleman (1985) polycrystal model. A general implementation of this
model requires that the contact algorithm be aware of the flow stress in pure shear along the
contact surface. a requirement greatly complicated by the anisotropic material description.
In order to simplify this procedure, our implementation of the Wanheim friction model
assumes isotropic material behavior and therefore requires only an approximation of the
uniaxial tensile strength of the material. For the current analysis we neglect the kinematic
terms in the material description. Even though such hardening is ideal in order to model
bulk anisotropies due to large-strain textural hardening, such constitutive details will not
be required for the finite element portion of our analysis. The material strength in uniaxial
tension can be estimated from equation (15) by first substituting D for D P (a reasonable
approximation after the first few percent strain) and then inverting the expression to get

610 = V (K -/3(IDI,0)), (19)

where

O3(IDI, 0) = Y() + V(O)sinh - 1 ( 'D, ' (20)~\f(9) J
We use cO to serve as our estimate for the material strength in uniaxial tension to be used
in the calculation of frictional shears.

2.4 Finite Element Model

To model the workpiece, approximately 3,000 initially square, 4-node, plane-strain quadrilat-
erals are used with 11 elements through the thickness. Single gauss point integration, along
with standard DYNA2D hourglass control (Hallquist 1982), is applied to each quadrilateral
element. The workpiece is given a small initial velocity so as to bring it into contact with
the roll where frictional conditions pull the piece through the roll gap.

The roll is modeled as an elastic annulus whose deformability would allow an accurate
representation of the contact zone. Angular velocities are applied to the inner nodes, while
the outer nodes are defined as the contact surface that will interact frictionally with the
workpiece. The velocities of the inner nodes are prescribed throughout the entire calculation.
Since the rolling process is symmetric, the appropriate boundary conditions are applied at
the center of the rolled workpiece. In following with the notation of Truszkowski, Krol,
and Major (1980) and Truszkowski and Kiel (1982), we will refer to position through the
thickness of the workpiece by the parameter S = 2Ax/h, where Ax is the distance from the
sheet center, and h is the thickness of the sheet. Thus, S = 1 refers to the sheet surface, while
S = 0 refers to the sheet center. During a finite element calculation, a position is picked along
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the workpiece such that it is far enough away from either end that it will undergo steady-

state rolling conditions. At this location along the workpiece, three elements are chosen
whose gauss points are at S = 0.05, 0.5, and 0.95, and the displacement time histories for

the nodes composing each element are then saved for use in a polycrystal averaging scheme.

Since two different roll gaps are to be modeled, the model is changed only by scaling the
dimensions of the workpiece. The roll itself and the reduction in thickness are held constant.
An example of the deformed mesh for one of the test cases is shown in Figure 2. This figure
has fewer elements through the cross section and shows the deformation state of each element
more clearly.

Figure 2. Deformed finite element mesh with large draught rolling.

3. Texture Analysis

In the analysis that follows the calculation of the roll-gap displacement field, the polycrystal
textural response is calculated through the use of the detailed rate-dependent constitutive
model of Asaro and Needleman (1985). In this model, attention is paid to the elastic-
viscoplastic behavior of an initially random distribution of single crystals. The individual
crystal responses are then averaged to give a macroscopic aggregate behavior.

The constitutive description begins with the response of single crystals. Important single-
crystal microstructural aspects are incorporated into a continuum framework so as to simu-
late the complex micromechanics of single crystals. For the present purposes, an isothermal
version of the theory will suffice.

The kinematics of single-crystal deformation are as follows. The material is allowed to flow
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through the lattice due to dislocation motion, and then the lattice, with material embedded
in it. is subjected to elastic deformations and rigid rotations. For the isothermal deformations
considered here. the deformation gradient, F, is decomposed as

F = F*. FP, (21)

where
F x 

(22)

with x and X denoting the current and reference configuration of the material.

The deformations due to FP represent path-dependent strain on the crystallographic slip
systems, while the deformations in F' represent the elastic stretching and rotations of the
lattice.

A particular slip system is denoted by a and defined by a slip plane normal, m (' ) , and slip
direction. s"'), which are taken as initially orthogonal in the undeformed configuration and
allowed to convect with the lattice so as to become

s '
-

° t  F'* s(- ) , (23)

and
m m (

k
) . F" . (24)

These definitions have been shown to give a precise statement of normality in terms of work
conjugate measures of stress and strain when the rate is taken to be only a function of the
so-called resolved shear stress defined later. Collectively, equations (21) through (24) define
the plastic part of the rate of stretching tensor, F- F-', as

F. F-' - F'-' = DP + QP = s*()m*(a),'(n), (25)

where =,() denotes the rate of shearing on each slip system a, and summation is carried out
over all slip systems.

For notational convenience, the symmetric and antisymmetric tensors on each slip system
are defined. respectively, as,

P -[s*(n)m*(o) + s*(a)m(Q)], (26)
2

and
- [s*()m*() - s*(o)m*(o)], 

(27)
2

so that now we can express the plastic parts of the rate of stretching and the spin tensors,
respectively, as,

DP = E P(O) (-), (28)
(28

and
PP = Z W( )O). (29)
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Their elastic counterparts, D* and W*, are simply the symmetric and antisymmetric parts

of t* • F* - , which entirely contain the lattice deformation and rigid-body rotations.

The elasticity of the single crystal is said to be characterized by a strain energy function (P

that is defined only for processes exclusively involving elastic strain. The work increment

per unit reference volume done by such a deformation would then be

6W =r'F* F* - 1  &DI (30)

which allows the rate form
W = r F = . (31)

Note that r is the Kirchhoff stress that is related to o, the Cauchy stress as r det(F)a =

(po/p)o with p and Po as the densities in the deformed and undeformed states.

Allowing S* and E* to denote conjugate stress and strain measures, we can rewrite equa-

tion (30) as
JW = S*: 6E* = 65(E*), (32)

from which

S*= - i9E(33)

and, by the chain rule,
2= . (34)aE-;a-E*:

Taking E* to be the lattice Green strain as in Hill and Havner (1975) defined by

= 1[F*T. F* - I], (35)

then
T F*. S*. F*T, (36)

or

F*. a. FT, (37)

which can now be differentiated with respect to time to yield

-**= D* + D* . r+r. D*, (38)
V

where T is the Jaumann rate of Kirchhoff stress formed on axes that spin with the lattice,

and L* is defined as

L*=F*.F* • F*T.F*T. (39)
OE*OE*

At this point, it is quite common in the implementation of metal elastic-plastic laws to intro-

duce two assumptions. First, as long as the magnitudes of the stresses are small compared to

the elastic moduli, the last two terms in D* of equation (38) are neglected. Second, the com-

ponents of L* are taken equal to their reference state values. These assumptions are carried

through the rest of the discussion and will be the only assumptions required in the complete
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description of material or stress rotations. It is still necessary to describe the flow and strain
hardening that occur on the crystallographic slip systems. This will be accomplished within
the framework of a Schmid-like rule.

The constitutive law will now be phrased in terms of the stress rates formed on material axes.
The relation between the Jaumann stress rate formed on axes that spin with the material
and the lattice is found from the purely kinematical relations (equations (28) and (29)) as

v

* = + 2 ii) (40)

where

W = WW.r- r.W {(C. (41)

From equations (38) and (40), this becomes

v
L: D - ZR(O)<(0), (42)

where
R (

-
) = L: P(c) + )3(n).  (43)

Now with a simple adaptation of the Schmid rule of critical resolved shear stress, we can
complete the constitutive law with a relationship between ;y(0) and the current stress and
material state. This is specified in the form of

6'(0) [(44] [)

where 6(°. is a reference rate of shearing, such that if 7-( ) = g(a), then 6W is the resulting
rate of shear. The slip system's strength and strain hardening are described by the hardening
law

S • (45)

Note that the absolute magnitude in this equation rules out Bauschinger effects on individual
slip systems, but this could easily be modified.

Polycrystal averaging is achieved in an approximate fashion that ensures compatibility is
satisfied between each grain. Equilibrium, which is satisfied within each grain, may be
violated in between individual grains. Asaro and Needleman (1985) pose the single-crystal
constitutive (equation [42]) in the form

i_ = K: -(46)

by relating the nominal stress, n, to the Kirchoff stress, r, through

n = F -1 r. (47)

Taking the average of equation (46), we obtain

12



(i) = (K: F-B, (48)

and
(i) =(K:F) - (B). (49)

Compatibility is ensured by the assumption that each grain undergoes the same deformation
as the macroscopic aggregate; thus, equation (49) simplifies to

(ii) = (K): F - (B. (50)

Assuming that the volume fractions of each grain are identical, the macroscopic constitutive
law becomes

= K:F - B, (51)

where
n ,(52)

-- 1 NR K E IC (53)

and
B E 1), (54)

where N is the total number of grains, and the superscript i refers to the ith grain, thus
implying macroscopic equilibrium, Hill and Havner (1975).

4. Results

The preceding analysis was done in two phases. First, the roll-gap displacement field was
calculated by a finite element analysis. Second, the displacement time histories were used
as the macroscopic boundary conditions for the calculation of polycrystal texture at points
of interest through the thickness of the workpiece. The success of our analysis depends
on the fact that specific macroscopic constitutive features should have little effect on the
actual through-thickness displacement fields. Such fields will be highly constrained and, as
such, will be dependent on the macroscopic boundary conditions and relatively insensitive
to material hardening. Toward this end, the hardening form of the single-crystal material
description was chosen to be

= h0sech2 ( o) (55)

\ TS - TO)/

where ho represents the initial hardening rate, and TO and T, represent the initial and satu-
ration resistance to slip, respectively. This functional form for the single-crystal hardening
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law provides for the simulation of a wide variety of strain hardening behavior. In the current
study. strain rate sensitivity was minimized by taking rn = 0.005, and strain hardening in
the single crystals was scaled so that h0 = 8.970 and T = 1.8T0 . This is a rapidly saturating
functional form of the strain hardening law chosen only for convenience. It may be said to
reflect the late strain hardening in heavily work-hardened aluminum sheet (representative of
the final rolling passes), or it may only be a naive statement of material behavior. In either
case. it will function within our analysis as a stable work-hardening material description
useful in order to resolve the roll-gap displacement field. The elastic constants chosen reflect
the cubic symmetry of aluminum single crystals, specifically, cl = 1070T0 , c12 = 608%0 . and
c J." = 28370 . Specification of the single crystal elastic and strain hardening terms determines
the macroscopic behavior of the polycrystal. This is shown in Figure 3 along with our best
fit to polycrystal data using Bammann's model. In fitting to Bammann's model, both the
thermal and anisotropic behavior of the material have been neglected. Thus, all functions of
temperature reduce to constants, while variables describing the kinematic hardening tensor a
become zero. The fitted values are given as Y = 3.01T0 , f = 1.0, R, = 137o! and Rd = 8070.
The elastic constants used in Bamman's model are the corresponding macroscopic averaged
crystal quantities using the initially random distribution of single crystals. They are given
here as A = 658.4670 and G = 263.0%. It should again be noted that this is only a sim-
ple and convenient material description, and that actual stresses within the material during
processing are not of interest to the current study. The rolls were modeled as isotropically
elastic with a Young's modulus of 3000 % and a Poisson's ratio of 1/3.

8.0 - . .. .

a)

6.0 -

40

2.0 --

0.0
0.00 0.10 0.20

-e

Figure 3. Normalized effective stress vs. effective strain curves: (a)
constitutive model used in FEM and (b) macroscopic polycrystal
aggregate behavior.
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In the analysis that follows, two different roll-gap geometries are discussed. The first one
is referred to as large draught rolling and maintains the ratio 1,/h = 5.0. This corresponds
to a 40% reduction in thickness per pass under the rolls. The second roll-gap geometry is
referred to as small draught rolling, thus maintaining the ratio l,/h = 0.5, or a reduction of
4% in thickness per pass. These two particular roll gaps are important as they are represen-
tative of roll gaps that produce two distinctly different through-thickness deformation fields
(Truszkowski, Krol and Major 1980). Most roll gaps encountered during rolling have one
or the other or a hybrid of these two types of through-thickness deformation fields. Before
discussing texture results, it is of interest to examine the roll-gap displacement field in some
detail.

4.1 Roll-Gap Displacement Field

As an element of material is compressed in the roll gap, it also lengthens in the rolling
direction. This causes the velocity of the workpiece to increase during the rolling process. It
would stand to reason that at some point in the roll gap, the roll and workpiece move with
the same velocity. This is the neutral point. As an element at the surface of the workpiece
passes under the roll, it is first sheared in one direction as its velocity is less than the roll and
then sheared in the reverse direction after it passes the neutral point and attains a velocity
greater than the roll. Figure 4(a) is a plot of frictional shear stress normalized by the flow
stress in simple shear vs. the distance along the contact length normalized by the length of
contact for the large draught model with p = 0.2. As an element comes into contact with the
roll, its relative velocity is slower than the roll, and sliding friction will work to accelerate the
element. As the velocity of the element approaches that of the roll, shear stresses drop as full
sticking occurs at the neutral point. As the element passes the neutral point, shear stresses
are reversed as the material moves faster than the roll. In Figure 4(b), the frictional stress
normalized by the material flow stress in simple shear is plotted along the interface for the
case of small draught rolling with p = 0.2. For this case, the neutral point is located at the
exit point in the roll gap. This suggests that the velocity of the workpiece never exceeds that
of the roll, and that the applied surface tractions will be unidirectional. Figure 4 suggests
that the relative position of the neutral point may be a function of roll-gap geometry. This
point is further investigated in section 5 and shown to be only an anomaly of the particular
roll gaps and coefficients of friction that were analyzed.

Figure 5 shows plots of compressive-strain time history. Figures 5(a) and (b) show large
draught rolling with t = 0.2 and /t = 0.3, respectively. Figure 5(c) is for small draught
rolling with p = 0.2. In Figure 5 it can be seen that compressive-strain time histories are
not homogeneous throughout the roll gap, but converge by the end of the rolling process
to approximately the average compressive strain due to the final macroscopic reduction
in thickness, 622 . Figure 6(a) is a plot of shear strain, E12, normalized by Ief21, vs. time
(normalized by the total time for an element of material to pass through the roll gap) for
three through-thickness positions during a single pass of large draught rolling with P = 0.2.
Figure 6(b) shows the same roll-gap geometry with p = 0.3. Comparing Figures 6(a) and
(b), we can see that larger surface shear strains were achieved as well as higher shear strains
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Figure 4. Interface shear stress normalized by material flow stress in simple
shear vs. distance along the interface normalized by the length of the
interface for (a) large draught rolling with p = 0.2 and (b) small
draught rolling with p 0.2.

in the intermediate layer. Figure 6(c) is the shear-strain time history for the small draught
rolling with p = 0.2. Note here that the surface shear strain is not as high as in the large
draught rolling. One factor contributing to this phenomenon is that normal pressures do not
develop in small draught rolling to the same extent as in large draught rolling. A more likely
reason that surface shearing is less in the small draught case, is that the contact length is
much smaller than in the large draught case and there is not enough time for large shears
to develop, especially when, as previously mentioned, full sticking never actually develops.
What is interesting is that the intermediate layer at S = 0.5 develops a reversed shearing
with respect to the surface-layer shear. A possible explanation of this is given in section 5.

4.2 Texture Calculations

The three roll-gap displacement fields calculated in the previous section were used in calcu-
lations to resolve textures through the thickness of each workpiece. In order for the overall
roll-gap geometry to be preserved, multiple passes were modeled as repeated application of
the single-pass deformation-gradient time history. Therefore, repeated finite element calcu-
lations were not necessary. For materials that continue to harden past the first few percent
strain. this approach may not be applicable because material properties continue to vary
with each pass through the roll gap. Referring to Figure 3, we see that our particular ma-
terial model saturates rapidly, and that the material state will remain relatively constant
with each pass. In order to verify that this is the case, the large draught displacement

16



0.20

0.00 S=0.05

S=0.5

£22 -0.20 

a)

-0.40 S--0.95

-0.60
0.0 0.2 0.4 0.6 0.8 1.0

0.20

0.00 - S=0.05

S=0.5

-22 -0.20 b)

-0.40 -

S=0.95-

-0.60
0.0 0.2 0.4 0.6 0.8 1.0

0.020

S=0.95

0.000

£-22 -0.020 - S=0.5 c)

-0.040 
- S00

-0.060
0.0 0.5 1.0

normalized time

Figure 5. Compressive-strain time history for (a) large draught rolling with
M = 0.2, (b) large draught rolling with p = 0.3, and (c) small draught
rolling with [t = 0.2.
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Figure 6. Shear-strain time history for (a) large draught rolling with p 0.2,
(b) large draught rolling with p. 0.3, and (c) small draught rolling
with p0.2.

18



field was recalculated using the material state from the original finite element calculation.
The shear-strain time history for the second pass calculated by restarting the finite element
model is shown in Figure 7. With the exception of the roll-gap entrance, the final strain
state at the end of the rolling process is quite representative of any particular pass, and this
can be verified by comparison of Figure 7 to Figure 6(a). The advantage here is not just
savings in computational effort, but also avoiding the mistake of many investigators who
fail to maintain a constant roll-gap geometry. Often, in the literature, we find investigators
who wish to investigate constant roll-gap effects, but proceed by maintaining constant thick-
ness reduction. Since the overall roll-gap geometry is not preserved, small draught rolling
becomes large draught rolling after several passes.

1.0

0.6-
S=0.95

12 0.2 S=0.5

_ _
f  S=0.0522 "

-0.2 K
-0.6

0.0 0.2 0.4 0.6 0.8 1.0

normalized time

Figure 7. Shear-strain time history for a second pass of large draught rolling
with p = 0.2.

For large draught rolling, an overall thickness reduction of 64% was obtained by two appli-
cations of the deformation-gradient time history (i.e., two passes at a reduction of 40% each
pass) and an overall reduction of 87% was achieved by four passes. During small draught
rolling, passes were made by reducing the thickness 4% each pass. Thus, 25 passes were
required to reach 64% reduction, and 50 passes were required to reach 87% reduction.

Figure 8 shows {111} equal-area pole figures in the rolling direction/transverse direction
plane for large draught rolling with p = 0.2. The texture shown in Figure 8(a) is for a
reduction of 64%, while the texture in 8(b) is for a reduction of 87%.

The texture at S = 0.05 is the well-known plane-strain compression Taylor model texture
composed of mainly (110)[112] and (112)[111] ideal orientations. As we proceed upward
toward the surface to S = 0.95, we see a rotation of the texture about the transverse direction,
as is evident by the increasing significance of the (111)[112] and (100)[011] ideal orientations.
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Figure 8. {111} equal-area pole figures for (a) 64% reduction and (b) 87%

reduction by large draught rolling with p = 0.2.
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Figures 9(a) and (b) corresponds to large draught rolling with P = 0.3. Recall from the
previous section that the higher coefficient of friction created larger shear strains at the
surface and deeper penetration of shear into the cross section. We can see these phenomena
reflected in the relative sharper S = 0.95 and S = 0.5 textures of the /I = 0.3 case. Also note
that for p = 0.3, the texture has a slightly greater rotation about the transverse direction.

Figures 10(a) and (b) contain textures for small draught rolling with A = 0.2. Note that the
near-surface textures are similar to the those of the large draught rolling with comparable
friction. If we compare the S = 0.95 and S = 0.5 textures, we can see opposite rotations
about the transverse direction as compared to the S = 0.05 texture. This observation is
consistent with the shear time history plots of Figure 6.

Since textures have profound effects on subsequent material behavior, roll gap should be
a consideration when designing a rolling procedure as part of a manufacturing process. In
order to emphasize the macroscopic effects of roll-gap geometry on a final product, textured
aggregates calculated from the rolling process have been reloaded to calculate yield surfaces
as was done by Asaro and Needleman (1985). Both displacement and stress-type boundary
conditions were applied in order to probe the tensile stress space in the plane of the rolled
sheet. Since rolling was achieved by compression in the x2 direction, this would be assumed
to remain traction free, i.e.,

N 22 = 1 21 = N 23 = 0. (56)

Further, it was assumed that planes perpendicular to the compression, rolling, or transverse
directions maintained their orientations. Therefore,

f12 = f32 = j13 = j31 = 0. (57)

Loading was achieved by prescribing 33 and then prescribing that normal stresses in the
rolling plane remained proportional,

N11 = CN33 . (58)

Since loading taken to occur from the previously deformed configuration

f = F. F - ,  (59)

and

N = [det(F)' (60)

where Fj is the deformation gradient from the initial state to the final rolled state. By
varying c and keeping track of the Mises effective plastic strain, surfaces of constant offset
effective plastic strain equal to 0.005 were calculated. For plotting purposes, an interpolation
scheme to find the 0.005 offset effective plastic strain was used. The calculations were very
sensitive to this scheme and, as a result, any apparent loss of convexity in the results is
simply an effect of the numerics.

Figure 11 shows three of these surfaces through the thickness of a large draught rolling
specimen. The reference Mises ellipse is calculated by using the plane-strain Taylor factor
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of 2.86 x 1.8-o. Figure 12 shows the same through-thickness positions as Figure 11, but for
small draught rolling with the same thickness reduction and frictional conditions. Note that
yield surfaces vary more drastically through the thickness of the small draught case, and
that even a comparison between yield surfaces at the center of each specimen show different
behavior.

6.0

- Reference Mises ellipse
4.0 S=0.95

4.0 7 .m[ S=0.5

A. 0 S=0.05
2.0-

0.0 2~
0.0 2.0 4.0 6.0

Figure 11. Constant offset effective plastic strain yield surfaces through the
thickness due to 65% thickness reduction by large draught rolling
with p = 0.2.

5. Discussion and Conclusions

Dillamore and Roberts (1963) cold-rolled commercial-purity aluminum to an overall reduc-
tion of 927. They did this with constant reductions in thickness. Although they did not
maintain a constant roll-gap geometry, the final passes were well within the large gap cate-
gory. They estimated that the coefficient of friction between the rolls and workpiece was 0.2
and obtained {111} pole figures through the thickness for the final rolled product. These
pole figures are shown in Figure 13(a) as solid lines superimposed on the calculated data
of Figure 8(b). In Figure 13(a), we see that the calculated peaks correspond to within a
few degrees of the experimental contours signifying the same rotation of texture about the
transverse direction. In the calculation, there is a split in the top peak at the sheet sur-
face that is not found in the experiment, while the experimental peak at the sheet center
seems to be off by about 5' from the ideal (112)[111] orientation. Truszkowski, Krol, and
Major (1980) also cold-rolled aluminum, which they reported as 99.5% by weight pure, and
their results for 87.6/ reduction are shown as solid lines in Figure 13(b) with the calculated
data of Figure 8(b), again shown as discreet points. Here, we see excellent correspondence
between the calculation and experiment for the location of surface peaks. The calculated
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Figure 12. Constant offset effective plastic strain yield surfaces through the
thickness due to 65% thickness reduction by small draught rolling
with p = 0.2.

midpoint texture appears to be rotated approximately 70 too far about the transverse direc-
tion, indicating that the finite element simulation overestimated the shear penetration to the
midpoint of the workpiece thickness. The experiment shows several peaks in the workpiece
center that do not exist in the calculation. We note that the sheet used in this experiment
was initially hot-rolled and then annealed. This previous processing left the material with
strong textural peaks in the center of the sheet, which are reflected in Figure 13(b). Such
peaks should not be expected to appear in a calculation which assumes initially random
orientation of crystallites. It should be noted here that in modeling these experiments, the
exact experimental roll-gap geometry was not simulated. Neither experiment maintained a
constant roll-gap geometry, but they both were conducted within the large draught rolling
regime, and it is expected that they should both produce similar through-thickness defor-
mation fields. It should also be noted that frictional conditions at the sheet surface are not
easily characterized and, thus, the amount of frictional shear imposed by the experiments is
unknown.

In spite of the these inconsistencies between the calculated and experimental results, the gen-
eral agreement of calculated peaks due to the predominant deformation modes are strong
indicators that we can calculate textures for some complicated deformation states without
extensive computational costs. The use of the finite element method in calculating the neces-
sary boundary conditions was successful due, at least in part, to a reasonable approximation
of global polycrystal aggregate behavior and in part to the careful consideration of roll-
workpiece interaction. Further, by using the finite element method, details of the roll-gap
displacement field could be resolved and correlated with texture development through the
thickness.

The analysis of small draught rolling showed that the neutral point had moved to the exit
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Figure 13. {111} equal-area pole figures for aluminum cold-rolled to 92%
reduction in height. The experimental results of (a) Dillamore and
Roberts (1963) and (b) Truzkowski, Krol, and Major (1980) are
shown in solid lines.
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portion of the roll gap and, as a result, there was only unidirectional shearing along the

interface. Due to the analysis by Hill (1950), we know that the position of the neutral

point is actually a function of the coefficient of friction, and that increasing A would result

in the neutral point moving back away from the roll-gap exit. To find out whether or not

the position of the neutral point would change any characteristics of the through-thickness

shear inhomogeneity, the small draught model was run with p sufficient so as to move the

neutral point half way to the roll-gap entrance. Although surface shear strains were greatly
increased, the reverse shearing, at S = 0.5, was maintained at roughly the same level. This

led to the conclusion that the reverse shearing that is synonymous with the small draught

rolling is truly a geometric effect of the roll gap and independent of the interface conditions.

An examination of the flow field for the different roll gaps may prove instructive in finding

the root of the textural inhomogeneity occurring in small draught rolling.

Figures 14 and 15 contain contours of maximum principal strain rate. These contour lines

are a good indicator of the material flow. Figure 14 is for the entire small draught roll gap,

while Figure 15(b) is for only the entrance portion of the large draught rolling case. Note

that the contours for the small draught case are strikingly similar to those of the entrance

portion of the large draught case. This being the case, it could be said that the small draught
case is just underdeveloped (i.e., the short contact length inhibits development of the full

roll-gap displacement field). Further support for this argument can be found by returning to

the shear-strain time history plots for the two cases. In doing so, one would notice that the

shear time history for the large draught case (Figure 6[a]), up to the normalized time of 0.2, is
remarkably similar to the entire small draught shear-strain time history curve (Figure 6[c]).

In other words, if one were to remove the workpiece from the roll at this time, the material
would be textured as in the small draught case. Also note that the contact length scales as

the square root of the roll radius, therefore, it seems that large draught displacement fields

could be achieved during small reductions in thickness, provided a very large roll is used.

Our analysis shows that while frictional interaction with the roll causes a certain amount of

textural inhomogeneity through the thickness, this effect is limited to the near-surface layers
with only slight effects deeper in the thickness. Roll-gap geometry seems to play the major
roll in determining material flow in the gap. As the length of contact between the roll and

workpiece decreases, the roll-gap displacement field becomes much less uniform through the

thickness. The introduction of shear strains penetrating deeper into the cross section causes
rotation in the through-thickness textures to develop. These textures have profound effects

on subsequent material deformation and, as a result, should be considered in the design of
a final product.
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Figure 14. Contours of maximum principal strain for small draught rolling
with p 0.2.

Figure 15. Contours of maximum principal strain for large draught rolling with
- 0.2.
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